Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 16583, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024170

RESUMO

Mechanosensitive ion channels are pore-forming transmembrane proteins that allow ions to move down their electrochemical gradient in response to mechanical stimuli. They participate in many plant developmental processes including the maintenance of plastid shape, pollen tube growth, etc. Herein, a total of 11, 10, 6, 30, 9, and 8 MSL genes were identified in Aegilops tauschii, Hordeum vulgare, Sorghum bicolor, Triticum aestivum, Triticum urartu, and Zea mays, respectively. These genes were located on various chromosomes of their respective cereal, while MSLs of T. urartu were found on scaffolds. The phylogenetic analysis, subcellular localization, and sequence homology suggested clustering of MSLs into two classes. These genes consisted of cis-regulatory elements related to growth and development, responsive to light, hormone, and stress. Differential expression of various MSL genes in tissue developmental stages and stress conditions revealed their precise role in development and stress responses. Altered expression during CaCl2 stress suggested their role in Ca2+ homeostasis and signaling. The co-expression analysis suggested their interactions with other genes involved in growth, defense responses etc. A comparative expression profiling of paralogous genes revealed either retention of function or pseudo-functionalization. The present study unfolded various characteristics of MSLs in cereals, which will facilitate their in-depth functional characterization in future studies.


Assuntos
Produtos Agrícolas/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/genética , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Genes de Plantas/fisiologia , Estudo de Associação Genômica Ampla/métodos , Canais Iônicos/fisiologia , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/fisiologia , Fenômenos Fisiológicos Vegetais/genética , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Cálcio/metabolismo , Grão Comestível/metabolismo , Perfilação da Expressão Gênica , Homeostase/genética , Filogenia
2.
Genomics ; 112(1): 356-370, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30818061

RESUMO

The monovalent cation proton antiporter (CPA) superfamily comprises Na+/H+ exchanger (NHX), K+ efflux antiporter (KEA), and cation/H+ exchanger (CHX) family proteins, which play vital functions in plants. A total of 107 TaCPA proteins were identified in Triticum aestivum, and phylogenetically classified into 35 TaNHX, 24 TaKEA and 48 TaCHX proteins. These families had representatives derived from all three sub-genomes. TaKEA genes consisted of higher number of exons, followed by TaNHXs and TaCHXs. The occurrence of about 10 transmembrane regions and higher composition of helices and coils support their membrane-bound and hydrophobic nature. Diverse expression in various tissues and modulated expression under stress conditions suggested their role in development and in response to stress. Co-expression analyses revealed their complex interaction networks. Expression of TaNHX4-B.1 and TaNHX4-B.4 facilitated differential abiotic stress tolerance to Escherichia coli. Our study provides comprehensive information about CPA genes, which would be useful in their future functional characterization.


Assuntos
Antiporters/genética , Família Multigênica , Proteínas de Plantas/genética , Triticum/genética , Antiporters/química , Antiporters/classificação , Antiporters/metabolismo , Cátions/metabolismo , Cromossomos de Plantas , Clonagem Molecular , Escherichia coli/fisiologia , Perfilação da Expressão Gênica , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Conformação Proteica , Prótons , Splicing de RNA , Sequências Reguladoras de Ácido Nucleico , Estresse Fisiológico/genética , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
3.
BMC Genomics ; 19(1): 389, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29792165

RESUMO

BACKGROUND: Plant P-type II Ca2+ATPases are formed by two distinct groups of proteins (ACAs and ECAs) that perform pumping of Ca2+ outside the cytoplasm during homeostasis, and play vital functions during development and stress management. In the present study, we have performed identification and characterisation of P-type II Ca 2+ ATPase gene family in an important crop plant Triticum aestivum. RESULTS: Herein, a total of 33 TaACA and 9 TaECA proteins were identified from the various chromosomes and sub-genomes of Triticum aestivum. Phylogenetic analysis revealed clustering of the homoeologous TaACA and TaECA proteins into 11 and 3 distinct groups that exhibited high sequence homology and comparable structural organization as well. Both TaACA and TaECA group proteins consisted of eight to ten transmembrane regions, and their respective domains and motifs. Prediction of sub-cellular localization was found variable for most of the proteins; moreover, it was consistent with the evolutionarily related proteins from rice and Arabidopsis in certain cases. The occurrence of assorted sets of cis-regulatory elements indicated their diverse functions. The differential expression of various TaACA and TaECA genes during developmental stages suggested their roles in growth and development. The modulated expression during heat, drought, salt and biotic stresses along with the occurrence of various stress specific cis-regulatory elements suggested their association with stress response. Interaction of these genes with numerous development and stress related genes indicated their decisive role in various biological processes and signaling. CONCLUSION: T. aestivum genome consisted of a maximum of 42 P-type II Ca 2+ ATPase genes, derived from each A, B and D sub-genome. These genes may play diverse functions during plant growth and development. They may also be involved in signalling during abiotic and biotic stresses. The present study provides a comprehensive insight into the role of P-type II Ca 2+ ATPase genes in T. aestivum. However, the specific function of each gene needs to be established, which could be utilized in future crop improvement programs.


Assuntos
Regulação da Expressão Gênica de Plantas , ATPases do Tipo-P/genética , Triticum/enzimologia , Triticum/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Cromossomos de Plantas/genética , Secas , Duplicação Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genoma de Planta/genética , Resposta ao Choque Térmico/genética , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , ATPases do Tipo-P/química , ATPases do Tipo-P/metabolismo , Filogenia , Domínios Proteicos , Transporte Proteico/efeitos dos fármacos , Sais/farmacologia , Triticum/efeitos dos fármacos , Triticum/microbiologia
4.
Front Plant Sci ; 8: 1019, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28649263

RESUMO

Long non-coding RNAs (lncRNAs) are a family of regulatory RNAs that play essential role in the various developmental processes and stress responses. Recent advances in sequencing technology and computational methods enabled identification and characterization of lncRNAs in certain plant species, but they are less known in Triticum aestivum (bread wheat). Herein, we analyzed 52 RNA seq data (>30 billion reads) and identified 44,698 lncRNAs in T. aestivum genome, which were characterized in comparison to the coding sequences (mRNAs). Similar to the mRNAs, lncRNAs were also derived from each sub-genome and chromosome, and showed tissue developmental stage specific and differential expression, as well. The modulated expression of lncRNAs during abiotic stresses like heat, drought, and salt indicated their putative role in stress response. The co-expression of lncRNAs with vital mRNAs including various transcription factors and enzymes involved in Abscisic acid (ABA) biosynthesis, and gene ontology mapping inferred their regulatory roles in numerous biological processes. A few lncRNAs were predicted as precursor (19 lncRNAs), while some as target mimics (1,047 lncRNAs) of known miRNAs involved in various regulatory functions. The results suggested numerous functions of lncRNAs in T. aestivum, and unfolded the opportunities for functional characterization of individual lncRNA in future studies.

5.
Front Plant Sci ; 7: 1775, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27965686

RESUMO

The Ca2+/cation antiporters (CaCA) superfamily proteins play vital function in Ca2+ ion homeostasis, which is an important event during development and defense response. Molecular characterization of these proteins has been performed in certain plants, but they are still not characterized in Triticum aestivum (bread wheat). Herein, we identified 34 TaCaCA superfamily proteins, which were classified into TaCAX, TaCCX, TaNCL, and TaMHX protein families based on their structural organization and evolutionary relation with earlier reported proteins. Since the T. aestivum comprises an allohexaploid genome, TaCaCA genes were derived from each A, B, and D subgenome and homeologous chromosome (HC), except chromosome-group 1. Majority of genes were derived from more than one HCs in each family that were considered as homeologous genes (HGs) due to their high similarity with each other. These HGs showed comparable gene and protein structures in terms of exon/intron organization and domain architecture. Majority of TaCaCA proteins comprised two Na_Ca_ex domains. However, TaNCLs consisted of an additional EF-hand domain with calcium binding motifs. Each TaCaCA protein family consisted of about 10 transmembrane and two α-repeat regions with specifically conserved signature motifs except TaNCL, which had single α-repeat. Variable expression of most of the TaCaCA genes during various developmental stages suggested their specified role in development. However, constitutively high expression of a few genes like TaCAX1-A and TaNCL1-B indicated their role throughout the plant growth and development. The modulated expression of certain genes during biotic (fungal infections) and abiotic stresses (heat, drought, salt) suggested their role in stress response. Majority of TaCCX and TaNCL family genes were found highly affected during various abiotic stresses. However, the role of individual gene needs to be established. The present study unfolded the opportunity for detail functional characterization of TaCaCA proteins and their utilization in future crop improvement programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...